
HAL Id: hal-03345757
https://ifip.hal.science/hal-03345757

Submitted on 5 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RootAsRole: Towards a Secure Alternative to sudo/su
Commands for Home Users and SME Administrators
Ahmad Samer Wazan, David Chadwick, Rémi Venant, Romain Laborde,

Abdelmalek Benzekri

To cite this version:
Ahmad Samer Wazan, David Chadwick, Rémi Venant, Romain Laborde, Abdelmalek Benzekri.
RootAsRole: Towards a Secure Alternative to sudo/su Commands for Home Users and SME Ad-
ministrators. 36th IFIP International Conference on ICT Systems Security and Privacy Protection
(SEC 2021), IFIP : International Federation for Information Processing, Jun 2021, Oslo, Norway.
pp.196-209, �10.1007/978-3-030-78120-0_13�. �hal-03345757�

https://ifip.hal.science/hal-03345757
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RootAsRole: Towards a Secure Alternative to
sudo/su Commands for Home Users and SME

Administrators

Ahmad Samer Wazan1,2, David W Chadwick3, Remi Venant4, Romain
Laborde2, and Abdelmalek Benzekri2

1 Zayed University, UAE
2 Paul Sabatier University, France

3 Kent University, UK
4 LeMans University, France

Abstract. The typical way to run an administrative task on Linux is
to execute it in the context of a super user. This breaks the principle of
least privilege on access control. Other solutions, such as SELinux and
AppArmor, are available but complex to use. In this paper, a new Linux
module, named RootAsRole, is proposed to allow users to fine-grained
control the privileges they grant to Linux commands as capabilities. It
adopts a role-based access control (RBAC) [14], in which administrators
can define a set of roles and the capabilities that are assigned to them.
Administrators can then define the rules controlling what roles users or
groups can assign to themselves. Each time a Linux user wants to execute
a program that necessitates one or more capabilities, (s)he should assign
the role to him/herself that contains the needed capabilities, providing
there is a rule that allows it. A pilot implementation on Linux systems
is illustrated in detail.

Keywords: sudo/su commands · Linux capabilities · privilege escalation
· Access Control

1 Introduction

Administering an OS includes many tasks such as managing the OS users, file
system, security policy, processes, system clock etc. Historically, Linux admin-
istration was based on the existence of one powerful user, called super user or
root, whose id value is 0. The initial administration model was very simple be-
cause any user can manage any resource on the system as long as the effective
user ID (euid) of the process run by the user is equal to zero. Indeed, every
process on Linux systems has four types of group and user IDs, the most impor-
tant ones are: Real ID (ruid,rgid) and Effective ID (euid,egid). Typically, real
ID is used to show to which user or group the process belongs whilst Effective
ID is used to determine the permissions granted to a process. According to the
initial administration model, any process whose euid or egid is 0 can achieve
all the administrative tasks on Linux. This type of process is referred to as a



2 A.S. Wazan et al.

privileged process [7]. Consequently, any regular user who wants to achieve an
administrative task on Linux must change his euid or egid to 0.

This models creates a problem because all programs executed in the context
of the super user can in fact lead to a privilege escalation attack when the
executed program has an exploitable vulnerability or when the executed program
has some arguments that allow malicious users to execute arbitrary commands
on the system. For example, recently a vulnerability has been discvored in sudo
program (setuid bit set) that allows any non privileged user to become root
[11]. Another example, an administrator who adds to the sudo configuration
file the possibility for a user test to run the command find could give the user
test root access to the whole system, if he was not aware of the existence of
the exec argument in the find command. This argument allows the test user
to execute arbitrary commands on the system (see figure 1). In addition, the
simple administration model can also cause disastrous problems on the system
when users commit some fatal error such as ”rm -rf / ” which allows the user to
remove the whole files system (see figure 2).

Fig. 1. Privilege escalation with Find command.

Fig. 2. sudo command.



Title Suppressed Due to Excessive Length 3

As a consequence, a POSIX draft (POSIX draft 1003.1e) has been proposed
in order to create special permissions called Linux capabilities5. Although the
POSIX draft has been withdrawn, it has been integrated into the kernel of
Linux since 1998. We use the term administrative privileges to refer to Linux
capabilities. The power of the super user is divided into a list of sub-powers that
can be distributed separately to processes by giving them only the administrative
privileges they need [1] (see figure 3).

For different reasons Linux capabilities have not been widely used. The first
problem comes from the use of extended attributes to store the capabilities of
executable files (problem 1). Secondly, system administrators don’t have a tool
that allows them to distribute capabilities to Linux users in a fine-grained manner
(problem 2). Fine-grained privilege distribution should give an administrator
the ability to decide: (1) which capabilities to give to which users or groups,
(2) with which programs and (3) on which resources users can use the granted
privileges. Finally, Linux doesn’t provide a tool that permits Linux users to know
the capabilities that a program needs in order to run successfully (problem 3).
Linux kernels come with an emulation mode that allows any process whose euid
is 0 to have the full list of Linux capabilities, emulating in this way the original
administration model. As a consequence, the majority of Linux users still use
su and sudo commands to run privileged programs that obtain the full list of
capabilities from the kernel because their euid is equal to 0.

Fig. 3. Traditional based processes VS capability based processes.

Thus, the changes that have been made to the Linux kernel since 1998 haven’t
helped to concretely provide a more secure administrative model. In 2015, the
kernel of Linux was modified in order to address the technical problems related

5 The capability term here should not be confused with the capability term used in
access control literature that refers to a token given by the kernel to a process to
access an object (e.g. file descriptor)



4 A.S. Wazan et al.

to the storing of capabilities in the extended attributes of executable files (i.e.
problem 1). In addition, this new feature added to the kernel makes it possible
to extend the capability module by adding on the top of it a policy management
tool that can be configured by the administrators of Linux system.

The objective of this paper is to allow administrator to restrict the use of
Linux capabilities in their systems by resolving the problem 2, without nec-
essarily having to extend their kernels with complex Linux security modules
(LSM) such as SELinux and AppArmor. This can be especially suitable for
home users and for SME administrators. Concretely, we are providing a mod-
ule called RootAsRole that gives system administrators the possibility of finely
controlling the distribution of administrative privileges to Linux users. We have
implemented a role-based approach where each role maps to a set of capabilities
that can be granted to users or groups of users. Linux users use our sr command
to assume these roles and execute their privileged applications.

The paper is organised as follows. Section 2 describes Linux capabilities and
shows what limited tools are available to distribute them to Linux programs.
In section 3, we review related work, whilst section 4 introduces the RootAs-
Role module and shows its advantages by presenting one motivating scenario. In
section 5 we conclude with the limitations of our proposal and our future work.

2 Linux Capabilities

Starting with Kernel 2.2, Linux divides the traditional power of the superuser
into smaller distinct units called capabilities [8]. There are currently 38 capabili-
ties implemented in the kernel of Linux. In this system, the notion of a privileged
process changes to represent any process that has one or more of the 38 capa-
bilities in its credentials, and is no longer a process whose euid or egid is equal
to zero. Root user is now considered as any other regular user. However, Linux
still provides an emulation mode that allows any process whose euid or egid is
equal to zero to automatically have the full list of available capabilities in its
credentials and thereby become a privileged process.

All Linux capabilities start with the keyword cap, and each one of them
allows a different set of administrative tasks. For example, any process that has
the capability cap net admin can modify the network interface configuration,
administer the IP firewall, and modify the routing tables as well as many other
network related activities. The capability cap dac override allows the process
to bypass file and directory permissions. Similarly cap mac override allows the
Mandatory Access control rules to be overridden. A complete explanation of the
Linux capabilities can be found in the Linux man [8].

The file /proc/[PID]/status lists the current values of the five sets for the
process with the given PID. For any root process, the values of Permitted, Ef-
fective and Bounding capability sets are totally filled, whilst the Inheritable and
Ambient sets are totally empty (Figure 4). Since the reserved storage size for
each capability set is 64 bits, and Linux has only defined 38 capabilities, this
explains why the top 26 bits of each set are empty.



Title Suppressed Due to Excessive Length 5

Fig. 4. Values of a shell run by root (cat /proc/$$/status).

Effective contains the set of capabilities that are currently used by the pro-
cess. textitcap capable() reads this set in order to verify whether a process is
allowed to achieve a privileged task or not. Permitted contains the set of capa-
bilities that a process can use, which is a superset of the Effective set. A process
can drop a capability from its Effective and Permitted sets. Dropping a capability
from the Effective set means that the process wants to temporarily disable the
concerned capability, but removing a capability from the Permitted set means
that the process permanently loses the capability. The Inheritable set is used by
a process that wants to grant some capabilities to another process that results
from an exec() call to its binary file. If a process has the cap setpcap capability
in its Permitted, this gives it the possibility to add additional capabilities to its
Inheritable set. cap bset is the capability bounding set of a process. This set is
used to limit the capabilities that it may pass on to a new process obtained from
an exec() call to its executable file. Without this set, attackers, who succeed in
modifying the extended attributes of an executable file, could run processes that
have the full set of root privileges. The cap bset set is also considered to be a
superset of the Inheritable set. The Ambient set is a relatively new addition to
the Linux Kernel, which has been added to resolve the problems arising from
the use of extended attributes to store the capabilities of executable files (see
later).

Executable files only have the ability to store three sets of capabilities: In-
heritable, Permitted and Effective. These sets are used to grant privileges to the
process resulting from an exec() call of the binary file, by masking them against
the capability sets of the calling process as described in the next section.

Linux stores the file capabilities in the extended attributes (xattrs) of binary
files. This has been the cause of several different problems that has limited the
use of the Linux capability model. In particular:

– some basic Linux commands don’t use the extended attributes correctly.
For example, the mv command preserves the extended attributes by default.
However, the administrator doesn’t get a warning message when moving files
onto a file system that doesn’t support the extended attributes, so they are
lost. On the other hand, the cp command doesn’t copy the extended at-
tributes by default; the administrator must add the option –preserve=xattr.



6 A.S. Wazan et al.

Other issues have been reported about archiving and backup tools that don’t
properly take care of the extended attributes [2];

– executing privileged scripts in a secure way is not possible. Linux adminis-
trators have to inject the root privileges into the interpreter program binary
and not into the scripts. In this way, all scripts run by the interpreter will
gain the privileges of their interpreter whereas the administrator may wish
to give different privileges to different scripts;

– the xattrs are often lost when Linux packages are updated. This is a huge
problem when the number of binaries containing capabilities is relatively big,
or when a program calling a system binary is suddenly halted;

– the Linux kernel doesn’t take into account the configuration of the LD PRELOAD
variable when capabilities are stored in binaries. LD PRELOAD is an en-
vironment variable that contains the list of user-specified libraries that are
dynamically loaded before all other shared libraries [3]. Typically, this fea-
ture can be used to intercept the standard system calls such as malloc(),
open(), close(), etc.

Regarding the Linux capability model, we believe it has some limitations. As
pointed out by Michael kerrisk [6] Linux doesn’t have a central authority that
determines how capabilities should be linked to the kernel features. We believe
that this issue constitutes a significant obstacle, but this problem doesn’t affect
only RootAsRole but all other LSM modules. Further research is needed to
handle this issue because kernel developers define the access controls on kernel
resources in an ad-hoc manner [12].

3 Related Works

Some existing Linux security modules can be used to restrict the distribution
of Linux capabilities to programs, such as SELinux, AppArmor and Grsecurity.
However, these modules allow not only the capabilities’ distribution to Linux
programs to be managed, but also mandatory access control (MAC) rules to
be defined. SELinux implements a label based access control (LBAC) model
[13] and uses the extended attributes to store label values. As a consequence,
SELinux suffers from the same problems that we mentioned earlier with regards
to the extended attributes. In addition, SELinux is very hard to manage even by
experienced administrators due to the difficulties with regards to the manage-
ment of the LBAC system and the MAC policy. Thus, SELinux is not suitable
for home users nor for SME administrators.

AppArmor presents an interesting approach because it uses pathname en-
forcement instead of labels. The syntax for writing AppArmor profiles is much
easier than SELinux. AppArmor also provides a tool that automatically gener-
ates profiles for programs. The user runs the automation tool and his program
at the same time and the tool then asks for the user/Administrator to approve
the addition of each generated rule to the profile. Unfortunately, this learning
mode fails very often to create automated profiles [9]. Grsecurity adopts like Ap-
pArmor a pathname enforcement approach. Grsecurity implements Role Based



Title Suppressed Due to Excessive Length 7

Access Control (RBAC) model [10] that allows an administrator to determine
for each program the authorized users and their associated roles as well as the
access permissions on the resources that programs can access. It allows also to
determine the list of Linux capabilities that any programs have the authorization
to take. However, Grsecurity is not only a LSM module, it is presented as an
extensive security enhancements to the Linux kernel because it proposes a set
of protection measures against a set of well known security threats.

Theoretically, Linux home users and administrators can use these modules
to prevent the privilege escalation problem. However, it is known that the MAC
system is disabled on the majority of Linux systems. When activated, the default
policy is only applied to the most high risk applications (such as network appli-
cations) while the other applications are left unconstrained. Thus, these MAC
modules are useless to prevent the root privilege escalation problem because any
unconstrained process that is run by sudo/su can easily deactivate any of these
MAC modules or even remove them. In addition, many home and SME admin-
istrators may not need to extend their kernels with complex LSM modules but
they may wish to restrict the distribution of Linux privileges without having to
modify their kernels. Today, there is no solution to this type of users’ need. As
a consequence, most Linux users continue to use the sudo/su command to man-
age their own Linux systems because of the complexity of the MAC modules.
Our objective is to provide a more usable module where the MAC rules are not
needed or where they are only applied partially on the Linux system. This is the
case for most home users and SME administrators.

4 RootAsRole Module

The pam cap module is the only module that can be used by administrators
to define how capabilities can be distributed to Linux users for systems where
MAC rules are not implemented. This module has three major problems: the
use of extended attributes to store the capabilities, no fine-grained distribution
of capabilities to Linux users and no tool that can help Linux users to figure out
the capabilities requested by a program.

In order to solve these problems, we have created the RootAsRole module.
Roles are defined by an administrator in a central configuration file, and each
role is assigned a set of capabilities. RootAsRole allows Linux users to use the sr
command to assign roles to themselves. The sr command provides options that
allow users to know what roles are currently assigned to themselves and what
capabilities are assigned to each role.

An administrator defines the rules that allow the fine-grained distribution of
capabilities to users and groups, without needing to inject the capabilities into
the extended attributes of binary files. Administrators define the roles and the
rules that allow users or groups to assign the roles to themselves. Each time a
Linux user wants to execute a program that necessitates one or more capabilities,
(s)he should assign the role to him/herself that contains the needed capabilities,
providing there is a rule that allows it.



8 A.S. Wazan et al.

Fig. 5. Role definition in RootAsRole module.

The RootAsRole module comes with a configuration file called capability-
role.xml that is stored in /etc/security. This file allows an administrator to define
each role along with its list of capabilities, as well as the lists of users, groups
and programs that can be assigned this role. In addition, users and groups can
be constrained as to when the role can be assigned. For example, the following
configuration file defines a role (role1) that has two capabilities (cap net raw and
cap net admin). Users guillaume and remi can be assigned this role as can be
the users of group adm. However, remi can only be assigned this role when he is
executing the tcpdump command. The other users are not constrained and can
be assigned this role with any program; they get a privileged shell inside which
they can run any program (that only needs the user’s assigned capabilities).

This configuration file limits the use of xattrs. It is read into a central
database that allows administrators to keep track of the assigned roles and the
programs that users can use with these roles.

When the administrator lists a program under a user, the user can only run
this program with the capabilities. In some cases, a conflict may exist between
the programs defined at the user level and those defined at the group level. For
example, an administrator may restrict a user to execute only one program,
but at the same time he authorises the user’s group to execute any program.
In these situations, we consider the configuration at the user level overrides
the configuration at the group level i.e. the specific rule overrides the generic
rule. In the example above, the configuration shows that remi can only run the
tcpdump program, but if remi was a member of the adm group, which can run
any program, this would not apply to remi.The RootAsRole module is released
here [5] under GPL-3.0 License.



Title Suppressed Due to Excessive Length 9

Fig. 6. Example Definition of a role in the configuration file.



10 A.S. Wazan et al.

5 Motivation Scenario

We will demonstrate the use of our RootAsRole module through one scenario.
This scenario shows the advantage of our module with regards the existing tools
that are used today to run administrative tasks. Scenario A user contacts his
administrator to ask for a privilege that allows him to run a HTTP server that
he developed using Python. His script needs the privilege cap net bind service
to bind the server socket to port 80. Without our module, the administrator
has two options: (1) Use the setcap command to assign the capability to the
Permitted set of the Python interpreter or (2) use the pam cap module to as-
sign the cap net bind service to the user and then inject this capability into the
Inheritable and Effective sets of the Python interpreter. Both solutions pose se-
curity risks. In the case of option (1) the Python interpreter can be used by any
other user who will automatically gain the cap net bind service privilege. In the
case of option (2), all other python scripts run by the user will have the same
privilege. It is not possible to run other Python scripts without giving them the
privilege cap net bind service. Implementation To demonstrate the implementa-
tion of this scenario, we selected the following python script, server.py, which can
be used to run a HTTP server [4]. When executing the server.py script without
any privileges, we get the ’permission denied ’ error message (Figure 7).

Fig. 7. Run the Python HTTP server by a normal user.

The script requires the capability cap net bind service to bind the server to
port 80. When an administrator runs the script using the sudo command (sudo
python server.py -p 80 ), the Python process is given the full set of privileges,
because as indicated earlier, any process whose euid or egid is equal to zero auto-
matically gets the full set of privileges (i.e. emulating mode). Figure 8 shows that
process 5402 has the full set of Permitted, Effective and Bounding capabilities
as these values correspond to the first 38 bits being set to 1.

When an administrator uses the setcap command to assign the cap net bind service
capability to the python interpreter (Figure 9) he creates a security risk because
now all other users of the system will be able to run Python scripts with the
same privilege.



Title Suppressed Due to Excessive Length 11

Fig. 8. Values of the capability sets for a process.

Fig. 9. Setting the Permitted and Effective capabilities for the Python2.7 interpreter.

The administrator can alternatively use the pam cap module by first set-
ting the cap net bind service in the /etc/security/capability.conf file (pam cap’s
configuration file), and then using setcap command as in Figure 10.

Fig. 10. Setting the Inheritable and Effective capabilities for the Python2.7 interpreter.

This solution raises another potential security risk because now any python
script run by the same user will obtain the same privilege.

Our solution avoids these security risks. Suppose that the capabilityRole.xml
contains the configuration shown in Figure 11

In this case, the user awazan can assign himself the role role1 by using the sr
command whenever he wants to run his HTTP server python script (server.py)
see Figure 12.

As shown in Figure 13, the user awazan cannot run another script with
the same privilege. Generally, administrators may not want to limit the use of



12 A.S. Wazan et al.

Fig. 11. Defining role1 for running the Python HTTP server.

Fig. 12. User awazan assigns the role role1 to execute the Python HTTP server.



Title Suppressed Due to Excessive Length 13

capabilities to certain scripts or programs, as this would create a lot of work for
them. However, in some cases administrators may need this option especially
when they don’t completely trust all their users.

Fig. 13. user awazan unable to run another Python script.

6 Discussion, Limitations and Conclusions

Our module RootAsRole provides new functionality to the Linux community by
providing them with a module that allows Linux privileges to be given to users
through the assignment of roles. Our module also allows home users and/or SMEs
administrators to constrain the use of these privileges to certain programs (e.g.,
the Apache service or tcpdump). In addition, RootAsRole allows administrators
to assign roles to sets of users through the group concept. Our sr commands is
more secure than sudo/su commands because it comes only with two capabilities
which are cap setpcap and cap setfcap, while sudo/su commands need the full
list of Linux administrative privileges.

However we need to conduct a user study to analyze the usability issues of our
module. We need to test the usability regarding the configuration of RootAsRole
and the invocation of roles by users. But before conducting such study, we need
to add more tools. Firstly, we are currently finalizing the implementation of a
tool called capable that will allow an administrator to know the set of privileges
requested by a program. In addition, we would like to implement a tool that
allows system administrators to easily edit our central configuration file e.g. to
add roles to the configuration file along with the list of privileges, users, groups
and authorized programs. Secondly, we would like to add a GUI for setting
the configuration policy. Thirdly, we will work on defining default policies for
different distributions of Linux. Specifically, we will check the list of distributed
tools and provide a pre-configured policy for these tools.

Finally, we would like to extend our module to handle more complex sce-
narios. For example, giving administrators the possibility to limit the use of
privileges not only in terms of programs and resources but also in terms of ad-
ditional contextual information such as time and location. We would also like to
introduce additional RBAC features such as role hierarchies and separation of
duties [10].



14 A.S. Wazan et al.

Acknowledgement

This work was partially supported by the European Union’s Horizon 2020 re-
search and innovation program from the project CyberSec4Europe [grant agree-
ment number 830929].

References

1. J2. Serge E.Hallyn, Andrew G.Morgan, Linux capabilities: mak-
ing them work, The Linux Symposium, Ottawa, ON, Canada, 2008,
https://www.kernel.org/doc/ols/2008/ols2008v1-pages-163-172.pdf.

2. ”Extended attributes: the good, the not so good, the bad”, 2014,
https://www.lesbonscomptes.com/pages/extattrs.html. Last Access: 28/03/2021.

3. ”Linux manual page:ld.so, ld-linux.so - dynamic linker/loader”,
http://man7.org/linux/man-pages/man8/ld.so.8.html. Last Access: 28/03/2021

4. Example code of Python http Server, https://docs.python.org/2/library/simplehttpserver.html.
Last Access: 28/03/2021

5. Code source of RootAsRole module, https://github.com/SamerW/RootAsRole.
Last Access: 28/03/2021

6. Micheal Kerrisk, ”CAP SYS ADMIN: the new root”, 2012,
https://lwn.net/Articles/486306/. Last Access: 28/03/2021

7. Michael Kerrisk, ”the Linux Programming interface”, ISBN 159327291X, No Strarch
Press, October 1 2010.

8. ”Linux capabilities man page”, http://man7.org/linux/man-
pages/man7/capabilities.7.html. Last Access: 28/03/2021

9. ”Getting started with AppArmor”, https://www.slideshare.net/pirafrank/getting-
started-with-apparmor. Last Access: 28/03/2021

10. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman, ”Role-Based Access Control Models”, 1996, Computer 29, 3847.
DOI:https://doi.org/10.1109/2.485845

11. ”sudo vulnerability CVE-201914287”, https://medium.com/@isharaabeythissa/cve-
2019-14287-sudo-will-hit-your-root-4df17e6a089b. Last Access: 28/03/2021

12. T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, R. Wang, ”Pex: A permission
check analysis framework for linux kernel”, 2019, Proceedings of the 28th USENIX
Conference on Security Symposium, pp. 1205-1220.

13. Q. Wang, D. Chen, N. Zhang, Z. Qin and Z. Qin, ”LACS: A Lightweight Label-
Based Access Control Scheme in IoT-Based 5G Caching Context,” in IEEE Access,
vol. 5, pp. 4018-4027, 2017, doi: 10.1109/ACCESS.2017.2678510.

14. K. Sohr, M. Drouineaud, G. Ahn and M. Gogolla, ”Analyzing and Managing Role-
Based Access Control Policies,” in IEEE Transactions on Knowledge and Data En-
gineering, vol. 20, no. 7, pp. 924-939, July 2008, doi: 10.1109/TKDE.2008.28.


