Holistic Shuffler for the Parallel Processing of SQL Window Functions
Abstract
Window functions are a sub-class of analytical operators that allow data to be handled in a derived view of a given relation, while taking into account their neighboring tuples. Currently, systems bypass parallelization opportunities which become especially relevant when considering Big Data as data is naturally partitioned. We present a shuffling technique to improve the parallel execution of window functions when data is naturally partitioned when the query holds a partitioning clause that does not match the natural partitioning of the relation. We evaluated this technique with a non-cumulative ranking function and we were able to reduce data transfer among parallel workers in 85 % when compared to a naive approach.
Origin | Files produced by the author(s) |
---|
Loading...