Conference Papers Year : 2014

Movie Recommendation Using OLAP and Multidimensional Data Model

Worapot Jakkhupan
  • Function : Author
  • PersonId : 994885
Supasit Kajkamhaeng
  • Function : Author
  • PersonId : 994886

Abstract

This research proposes an adoption of data warehousing concepts to create a movie recommender system. The data warehouse is generated using ETL process in a desired star schema. The profiles of users and movies are created using multidimensional data model. The data are analyzed using OLAP, and the reports are generated using data mining and analysis tools. The recommended movies are selected using multi-criteria candidate selection. The movies which present the genres that match individual preference are recommended to the particular user. The multidimensional data model and OLAP provide high performance to discover the new knowledge in the big data.
Fichier principal
Vignette du fichier
978-3-662-45237-0_21_Chapter.pdf (539.57 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01405583 , version 1 (30-11-2016)

Licence

Identifiers

Cite

Worapot Jakkhupan, Supasit Kajkamhaeng. Movie Recommendation Using OLAP and Multidimensional Data Model. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. pp.209-218, ⟨10.1007/978-3-662-45237-0_21⟩. ⟨hal-01405583⟩
259 View
1274 Download

Altmetric

Share

More