Conference Papers Year : 2011

Resource-Aware Adaptive Scheduling for MapReduce Clusters

Abstract

We present a resource-aware scheduling technique for MapReduce multi-job workloads that aims at improving resource utilization across machines while observing completion time goals. Existing MapReduce schedulers define a static number of slots to represent the capacity of a cluster, creating a fixed number of execution slots per machine. This abstraction works for homogeneous workloads, but fails to capture the different resource requirements of individual jobs in multi-user environments. Our technique leverages job profiling information to dynamically adjust the number of slots on each machine, as well as workload placement across them, to maximize the resource utilization of the cluster. In addition, our technique is guided by user-provided completion time goals for each job. Source code of our prototype is available at [1].
Fichier principal
Vignette du fichier
978-3-642-25821-3_10_Chapter.pdf (494.31 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01597795 , version 1 (28-09-2017)

Licence

Identifiers

Cite

Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra, Ian Whalley, et al.. Resource-Aware Adaptive Scheduling for MapReduce Clusters. 12th International Middleware Conference (MIDDLEWARE), Dec 2011, Lisbon, Portugal. pp.187-207, ⟨10.1007/978-3-642-25821-3_10⟩. ⟨hal-01597795⟩
160 View
187 Download

Altmetric

Share

More