Conference Papers Year : 2011

Cross-Entropy Optimized Cognitive Radio Policies

Abstract

In this paper we consider cognitive processes and their impact on the performance of cognitive radio networks (CRN). We model the cognition cycle, during which cognitive radio (CR) sequentially senses and estimates the environment state, makes decisions in order to optimize certain objectives and then acts. Model-based analysis of CRN is used to solve control and decision making tasks, which actually gives the radio its “cognitive” ability. Particularly, we design an efficient strategy for accessing the vacant spectrum bands and managing the transmission-sampling trade-off. In order to cope with the high complexity of this problem the policy search uses the stochastic optimization method of cross-entropy. The developed model represents CRN ability to intelligently react to the network’s state changes and gives a good understanding of the cross-entropy optimized policies.
Fichier principal
Vignette du fichier
978-3-642-23041-7_2_Chapter.pdf (270.88 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01587842 , version 1 (14-09-2017)

Licence

Identifiers

Cite

Boris Oklander, Moshe Sidi. Cross-Entropy Optimized Cognitive Radio Policies. International IFIP TC 6 Workshops PE-CRN, NC-Pro, WCNS, and SUNSET 2011 Held at NETWORKING 2011 (NETWORKING), May 2011, Valencia, Spain. pp.13-21, ⟨10.1007/978-3-642-23041-7_2⟩. ⟨hal-01587842⟩
81 View
64 Download

Altmetric

Share

More