Perun: Confidential Multi-stakeholder Machine Learning Framework with Hardware Acceleration Support - Data and Applications Security and Privacy XXXV
Conference Papers Year : 2021

Perun: Confidential Multi-stakeholder Machine Learning Framework with Hardware Acceleration Support

Abstract

Confidential multi-stakeholder machine learning (ML) allows multiple parties to perform collaborative data analytics while not revealing their intellectual property, such as ML source code, model, or datasets. State-of-the-art solutions based on homomorphic encryption incur a large performance overhead. Hardware-based solutions, such as trusted execution environments (TEEs), significantly improve the performance in inference computations but still suffer from low performance in training computations, e.g., deep neural networks model training, because of limited availability of protected memory and lack of GPU support.To address this problem, we designed and implemented Perun, a framework for confidential multi-stakeholder machine learning that allows users to make a trade-off between security and performance. Perun executes ML training on hardware accelerators (e.g., GPU) while providing security guarantees using trusted computing technologies, such as trusted platform module and integrity measurement architecture. Less compute-intensive workloads, such as inference, execute only inside TEE, thus at a lower trusted computing base. The evaluation shows that during the ML training on CIFAR-10 and real-world medical datasets, Perun achieved a $$161\times $$161× to $$1560\times $$1560× speedup compared to a pure TEE-based approach.
Fichier principal
Vignette du fichier
513274_1_En_11_Chapter.pdf (1.45 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03677030 , version 1 (24-05-2022)

Licence

Identifiers

Cite

Wojciech Ozga, Do Le Quoc, Christof Fetzer. Perun: Confidential Multi-stakeholder Machine Learning Framework with Hardware Acceleration Support. 35th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2021, Calgary, AB, Canada. pp.189-208, ⟨10.1007/978-3-030-81242-3_11⟩. ⟨hal-03677030⟩
31 View
39 Download

Altmetric

Share

More