Self-stabilizing Distributed Algorithms by Gellular Automata
Abstract
Gellular automata are cellular automata with the properties of asynchrony, Boolean totality, and non-camouflage. In distributed computing, it is essential to determine whether problems can be solved by self-stable gellular automata. From any initial configuration, self-stable gellular automata converge to desired configurations, as self-stability implies the ability to recover from temporary malfunctions in transitions or states. In this paper, we show that three typical problems in distributed computing, namely, solving a maze, distance-2 coloring, and spanning tree construction, can be solved with self-stable gellular automata.
Origin | Files produced by the author(s) |
---|