N-Docker: A NVM-HDD Hybrid Docker Storage Framework to Improve Docker Performance
Abstract
Docker has been widely adopted in production environment, but unfortunately deployment and cold-start of container are limited by the low speed of disk. The emerging non-volatile memory (NVM) technology, which has high speed and can store data permanently, brings a new chance to accelerate the deployment and cold-start of container. However, it is expensive to replace the whole hard disk driver (HDD) with NVM. To achieve the fastest deployment and cold-start with lowest cost, we conduct in-depth analysis on the Top-134 images in Docker Hub and obtain two main insights as: (1) the storing latency of layered image has become the bottleneck of container deployment; (2) only a few image layers are required for container cold-start. Based on these two findings, we propose a NVM-HDD hybrid docker storage framework as N-Docker. It can effectively accelerate container cold-start by detecting the bottleneck layers as well as cold-start required layers and storing them into NVM for faster container startup with limited NVM capacity. Experimental results show that N-Docker can accelerate the container deployment by 1.21X and cold-start by 2.96X. Compared to NVM-Docker, which stores all images into NVM, N-Docker achieves the same performance improvements while reducing the usage of NVM by 88.22%.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|