Mind the Gap!: Learning Missing Constraints from Annotated Conceptual Model Simulations - The Practice of Enterprise Modeling
Conference Papers Year : 2021

Mind the Gap!: Learning Missing Constraints from Annotated Conceptual Model Simulations

Abstract

Conceptual modeling plays a fundamental role to capture information about complex business domains (e.g., finance, healthcare) and enables semantic interoperability. To fulfill their role, conceptual models must contain the exact set of constraints that represent the worldview of the relevant domain stakeholders. However, as empirical results show, modelers are subject to cognitive limitations and biases and, hence, in practice, they produce models that fall short in that respect. Moreover, the process of formally designing conceptual models is notoriously hard and requires expertise that modelers do not always have. This paper falls in the general area concerned with the development of artificial intelligence techniques for the enterprise. In particular, we propose an approach that leverages model finding and inductive logic programming (ILP) techniques. We aim to move towards supporting modelers in identifying domain constraints that are missing from their models, and thus improving their precision w.r.t. their intended worldviews. Firstly, we describe how to use the results produced by the application of model finding as input to an inductive learning process. Secondly, we test the approach with the goal of demonstrating its feasibility and illustrating some key design issues to be considered while using these techniques.
Fichier principal
Vignette du fichier
514409_1_En_5_Chapter.pdf (1.1 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04323862 , version 1 (05-12-2023)

Licence

Identifiers

Cite

Mattia Fumagalli, Tiago Prince Sales, Giancarlo Guizzardi. Mind the Gap!: Learning Missing Constraints from Annotated Conceptual Model Simulations. 14th IFIP Working Conference on The Practice of Enterprise Modeling (PoEM), Nov 2021, Riga, Latvia. pp.64-79, ⟨10.1007/978-3-030-91279-6_5⟩. ⟨hal-04323862⟩
35 View
39 Download

Altmetric

Share

More