A Regulated Sensing Solution based on a Self-Reference Principle for PCM+OTS Memory Array - VLSI-SoC: Technology Advancement on SoC Design Access content directly
Conference Papers Year : 2021

A Regulated Sensing Solution based on a Self-Reference Principle for PCM+OTS Memory Array

Abstract

Phase change memory (PCM) device associated with Ovonic Threshold Switch (OTS) selector is a proven solution to fill the gap between DRAM and mass storage. This technology also has the potential to be embedded in a high-end microcontroller. However, programming and reading phases efficiency is directly linked to the selector's leakage current and the sneak-path management. To tackle this challenge, we propose in this paper, a new sense amplifier able to generate an auto-reference taking into account leakage current of unselected cells, including a regulation loop to compensate voltage drop due to reading current sensing. This auto-referenced sense, built on the chargesharing principle, is designed on a 28nm FDSOI technology and validated through extensive Monte-Carlo and corner cases simulations. Layout and postlayout simulation results are also provided. From the simulation results, our sense amplifier is demonstrated to be robust for an ultra-large range of sneak-path current and consequently for a large range of memory array size, suitable for embedded memory in high-end microcontroller.
Embargoed file
Embargoed file
0 7 11
Year Month Jours
Avant la publication
Wednesday, January 1, 2025
Embargoed file
Wednesday, January 1, 2025
Please log in to request access to the document

Dates and versions

hal-04419842 , version 1 (03-02-2023)
hal-04419842 , version 2 (26-01-2024)

Licence

Attribution

Identifiers

  • HAL Id : hal-04419842 , version 2

Cite

J Gasquez, B Giraud, P Boivin, Y Moustapha-Rabault, V Della Marca, et al.. A Regulated Sensing Solution based on a Self-Reference Principle for PCM+OTS Memory Array. 29th IFIP/IEEE International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2021, Singapore, Singapore. pp.225-244. ⟨hal-04419842v2⟩
61 View
1 Download

Share

Gmail Facebook X LinkedIn More