Data Augmentation Method on Pine Wilt Disease Recognition - Intelligence Science IV
Conference Papers Year : 2022

Data Augmentation Method on Pine Wilt Disease Recognition

Weibin Li
  • Function : Author
  • PersonId : 1405988
Bingzhen An
  • Function : Author
  • PersonId : 1405989
Yuhui Kong
  • Function : Author
  • PersonId : 1405990

Abstract

In recent years, deep learning has made a breakthrough in image recognition. However, it often requires a large amount of label data as the sample set. In most practical applications, the neural network is prone to over-fitting or weak generalization due to the lack of annotation data. This phenomenon is especially obvious in a small-scale data set. To solve this problem, pine wilt disease data is used as an example to adopt mirroring, flipping, adding noise, rotating, scaling, and other augmentation methods to enhance the amount of the image sets. It can not only increase sample diversity but also make the network more stable for training. In this paper, the effects of different amplification methods and training samples size on the Faster R-CNN and YOLOv3 models are tested, and its results show that scaling has the greatest impact on the two models for the reason that the two models are both sensitive to the size of sample images. The accuracy of Faster R-CNN starts to decline when the number of training sets is expanded to 60% of the new training samples, the accuracy of YOLOv3 starts to decline when the number of training sets is expanded to 75%.
Embargoed file
Embargoed file
0 0 10
Year Month Jours
Avant la publication
Wednesday, January 1, 2025
Embargoed file
Wednesday, January 1, 2025
Please log in to request access to the document

Dates and versions

hal-04666455 , version 1 (01-08-2024)

Licence

Identifiers

Cite

Weibin Li, Bingzhen An, Yuhui Kong. Data Augmentation Method on Pine Wilt Disease Recognition. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.458-465, ⟨10.1007/978-3-031-14903-0_49⟩. ⟨hal-04666455⟩
22 View
1 Download

Altmetric

Share

More