Fast Node Selection of Networked Radar Based on Transfer Reinforcement Learning
Abstract
The networked radar system can synthesize different echo signals received by various radars and realize the cooperative detection of multiple radars, becoming more and more critical for data fusion sharing and network collaboration. However, due to the large number and wide range of nodes in the networked radar system, there exists a redundancy problem in radar node assignment, which causes additional resource consumption and slows down the task execution speed of radar node selection. To solve the above problem, this paper proposes a fast radar node selection method based on transfer reinforcement learning to quickly select the optimal and minimum node resources. The proposed method devises a novel reward function for the Monte Carlo Tree and a different termination state of iteration to select the minimize the number of radar nodes. In order to further accelerate the selection of radar nodes, transfer reinforcement learning is presented to fully leverage the previous knowledge. Experimental results show that our proposed method can quickly select the optimal and minimum radar nodes in a brief period, significantly improving the speed of radar node selection in the networked radar
.