CA-ConvNeXt: Coordinate Attention on ConvNeXt for Early Alzheimer’s Disease Classification - Intelligence Science IV
Conference Papers Year : 2022

CA-ConvNeXt: Coordinate Attention on ConvNeXt for Early Alzheimer’s Disease Classification

Weikang Jin
  • Function : Author
  • PersonId : 1405959
Yue Yin
  • Function : Author
  • PersonId : 1405920
Jing Bai
  • Function : Author
  • PersonId : 1405921
Haowei Zhen
  • Function : Author
  • PersonId : 1405960

Abstract

Early diagnosis of Alzheimer’s disease allows patients to receive early and effective treatment as a way to increase their chances of survival. We propose CA-ConvNeXt for Early Alzheimer’s disease classification to solve the common MCI, AD, and NC classification problems. We employ the latest ConvNeXt network, which has a simpler topology and greater performance than ResNet and Swin Transformer. We effectively increase the model performance and reach 96$$\%$$% accuracy on the public ADNI dataset by adding Coordinate Attention to the ConvNeXt network.
Embargoed file
Embargoed file
0 0 10
Year Month Jours
Avant la publication
Wednesday, January 1, 2025
Embargoed file
Wednesday, January 1, 2025
Please log in to request access to the document

Dates and versions

hal-04666433 , version 1 (01-08-2024)

Licence

Identifiers

Cite

Weikang Jin, Yue Yin, Jing Bai, Haowei Zhen. CA-ConvNeXt: Coordinate Attention on ConvNeXt for Early Alzheimer’s Disease Classification. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.450-457, ⟨10.1007/978-3-031-14903-0_48⟩. ⟨hal-04666433⟩
11 View
1 Download

Altmetric

Share

More