Point Cloud Registration Based on Global and Local Feature Fusion - Intelligence Science IV
Conference Papers Year : 2022

Point Cloud Registration Based on Global and Local Feature Fusion

Wenping Ma
  • Function : Author
  • PersonId : 1405954
Mingyu Yue
  • Function : Author
  • PersonId : 1405955
Yue Wu
  • Function : Author
  • PersonId : 1405957
Hao Zhu
  • Function : Author
  • PersonId : 1405958
Licheng Jiao
  • Function : Author
  • PersonId : 1405918

Abstract

Global feature extraction and rigid body transformation estimation are two key steps in correspondences-free point cloud registration methods. Previous approaches only utilize the global information while the local information is ignored. Moreover, global and local information may play different roles on multiple point clouds. In this paper, we verify the sensitivity of different types of point clouds to global and local information. We conducted extensive experiments on the ModelNet40 dataset by the SGLF-DQNet. Through the experimental results, we summarize the point cloud structure of the sensitivity to global and local features in the correspondence-free point cloud registration task.
Embargoed file
Embargoed file
0 0 10
Year Month Jours
Avant la publication
Wednesday, January 1, 2025
Embargoed file
Wednesday, January 1, 2025
Please log in to request access to the document

Dates and versions

hal-04666432 , version 1 (01-08-2024)

Licence

Identifiers

Cite

Wenping Ma, Mingyu Yue, Yongzhe Yuan, Yue Wu, Hao Zhu, et al.. Point Cloud Registration Based on Global and Local Feature Fusion. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.310-317, ⟨10.1007/978-3-031-14903-0_33⟩. ⟨hal-04666432⟩
15 View
1 Download

Altmetric

Share

More