Real Time Captioning and Notes Making of Online Classes
Abstract
Due to the COVID-19 pandemic, all activities have turned online. The people who are hard of hearing are facing high difficulty to continue their education. So, the presented system supports them in attending the online classes by providing the real time captions. Additionally, it provides summarized notes for all the students so that they can refer to them before the next class. Google Speech to Text API is used to convert the speech to text, for providing real time captions. Three text summarization models were explored, namely BART, Seq2Seq model and the TextRank algorithm. The BART and the Seq2Seq models require a labelled dataset for training, whereas the TextRank algorithm is an unsupervised learning algorithm. For BART, the dataset is built using semi supervised methods. We evaluated all these models with rouge score evaluation metrics, among these BART proves to be best for our dataset with the following scores of 0.47, 0.30, 0.48 for rouge-1, rouge-2 and rouge-l respectively.