Conference Papers Year : 2022

A Primer for tinyML Predictive Maintenance: Input and Model Optimisation

Emil Njor
  • Function : Author
  • PersonId : 1406739
Jan Madsen
  • Function : Author
  • PersonId : 1406740
Xenofon Fafoutis
  • Function : Author
  • PersonId : 1406741

Abstract

In this paper, we investigate techniques used to optimise tinyML based Predictive Maintenance (PdM). We first describe PdM and tinyML and how they can provide an alternative to cloud-based PdM. We present the background behind deploying PdM using tinyML, including commonly used libraries, hardware, datasets and models. Furthermore, we show known techniques for optimizing tinyML models. We argue that an optimisation of the entire tinyML pipeline, not just the actual models, is required to deploy tinyML based PdM in an industrial setting. To provide an example, we create a tinyML model and provide early results of optimising the input given to the model.
Fichier principal
Vignette du fichier
534967_1_En_6_Chapter.pdf (491.89 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04668653 , version 1 (07-08-2024)

Licence

Identifiers

Cite

Emil Njor, Jan Madsen, Xenofon Fafoutis. A Primer for tinyML Predictive Maintenance: Input and Model Optimisation. 18th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Jun 2022, Hersonissos, Greece. pp.67-78, ⟨10.1007/978-3-031-08337-2_6⟩. ⟨hal-04668653⟩
31 View
3 Download

Altmetric

Share

More