A Hybrid Parallel Algorithm With Multiple Improved Strategies
Abstract
This paper proposes a novel hybrid parallel algorithm with multiple improved strategies. The whole population is divided into three subpopulations and each sub-population executes butterfly optimization algorithm, grey wolf optimization algorithm, and marine predator algorithm respectively. Meanwhile, they share information through three different communication strategies. And in order to improve the performance of the algorithm, the text uses the cubic chaotic mapping mechanism in the initialization stage. At the same time, the idea of adaptive parameter strategy is also introduced, so that some hyperparameters are changed along with the iteration. The results show that the algorithm can provide very competitive results, and is superior to the best algorithm in the literature on most test functions.