A Machine Learning Based Health Indicator Construction in Implementing Predictive Maintenance: A Real World Industrial Application from Manufacturing - Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems
Conference Papers Year : 2021

A Machine Learning Based Health Indicator Construction in Implementing Predictive Maintenance: A Real World Industrial Application from Manufacturing

Abstract

Predictive maintenance (PdM) using Machine learning (ML) is a top-rated business case with respect to the availability of data and potential business value for future sustainability and competitiveness in the manufacturing industry. However, applying ML within actual industrial practice of PdM is a complex and challenging task due to high dimensionality and lack of labeled data. To cope with this challenge, this paper presents a systematic framework based on an unsupervised ML approach by aiming to construct health indicators, which has a crucial impact on making the data meaningful and usable for monitoring machine performance (health) in PdM applications. The results are presented by using real-world industrial data coming from a manufacturing company. In conclusion, the designed health indicators can be used to monitor machine performance over time and further be used in a supervised setting for the purpose of prognostic like remaining useful life estimation in implementing PdM in the industry.
Fichier principal
Vignette du fichier
520759_1_En_65_Chapter.pdf (895.86 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04022129 , version 1 (09-03-2023)

Licence

Identifiers

Cite

Harshad Kurrewar, Ebru Turanouglu Bekar, Anders Skoogh, Per Nyqvist. A Machine Learning Based Health Indicator Construction in Implementing Predictive Maintenance: A Real World Industrial Application from Manufacturing. IFIP International Conference on Advances in Production Management Systems (APMS), Sep 2021, Nantes, France. pp.599-608, ⟨10.1007/978-3-030-85906-0_65⟩. ⟨hal-04022129⟩
39 View
41 Download

Altmetric

Share

More