Privacy-Preserving Analytics for Data Markets Using MPC
Abstract
Data markets have the potential to foster new data-driven applications and help growing data-driven businesses. When building and deploying such markets in practice, regulations such as the European Union’s General Data Protection Regulation (GDPR) impose constraints and restrictions on these markets especially when dealing with personal or privacy-sensitive data.In this paper, we present a candidate architecture for a privacy-preserving personal data market, relying on cryptographic primitives such as multi-party computation (MPC) capabl e of performing privacy-preserving computations on the data. Besides specifying the architecture of such a data market, we also present a privacy-risk analysis of the market following the LINDDUN methodology.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|