Minimizing Cognitive Overload in Cybersecurity Learning Materials: An Experimental Study Using Eye-Tracking
Abstract
Cybersecurity education is critical in addressing the global cyber crisis. However, cybersecurity is inherently complex and teaching cyber can lead to cognitive overload among students. Cognitive load includes: 1) intrinsic load (IL- due to inherent difficulty of the topic), 2) extraneous (EL- due to presentation of material), and 3) germane (GL- due to extra effort put in for learning). The challenge is to minimize IL and EL and maximize GL. We propose a model to develop cybersecurity learning materials that incorporate both the Bloom’s taxonomy cognitive framework and the design principles of content segmentation and interactivity. We conducted a randomized control/treatment group study to test the proposed model by measuring cognitive load using two eye-tracking metrics (fixation duration and pupil size) between two cybersecurity learning modalities – 1) segmented and interactive modules, and 2) traditional-without segmentation and interactivity (control). Nineteen computer science majors in a large comprehensive university participated in the study and completed a learning module focused on integer overflow in a popular programming language. Results indicate that students in the treatment group had significantly less IL (p < 0.05), EL (p < 0.05), and GL (p < 0.05) as compared to the control group. The results are promising, and we plan to further the work by focusing on increasing the GL. This has interesting potential in designing learning materials in cybersecurity and other computing areas.
Origin | Files produced by the author(s) |
---|