Machine Learning Methods in the Inclinometers Readings Anomaly Detection Issue on the Example of Tailings Storage Facility - Artificial Intelligence for Knowledge Management 8th IFIP WG 12.6 International Workshop, AI4KM 2021
Conference Papers Year : 2021

Machine Learning Methods in the Inclinometers Readings Anomaly Detection Issue on the Example of Tailings Storage Facility

Wioletta Koperska
  • Function : Author
Maria Stachowiak
  • Function : Author
Bartosz Jachnik
  • Function : Author
  • PersonId : 1239994
Paweł Stefaniak
  • Function : Author

Abstract

Measurement of structure deformation is one of the two most important elements in assessing the current operating condition of a hydro-technical facility, which is especially important when the object is under constant expansion. This is the case of KGHM’s Zelazny Most tailing dam which is the largest tailings storage facility (TSF) in Europe. The considerable size of the facility entails a very complex monitoring system consisting of numerous inclinometers, piezometers, seismic stations, geodetic benchmarks, etc. Interpretation of data from such an extensive system requires a certain degree of automation. It is not possible to perform a real-time complete data analysis through human resources, despite several teams responsible for supervision and maintenance of the TSF. The detection of anomalous events is one of the objectives of the monitoring process. This problem concerns, among others, the readings of the inclinometers responsible for the measurement of surface displacements, necessary in the assessment of tailing dam stability. The article presents methods of finding anomalies on the inclinometer with the use of machine learning techniques, which significantly simplifies the process of identifying attention-requiring areas. The effectiveness of the algorithms was tested on data samples from various measurement points. The best method will be to build learning-based supervised classifiers in the decision-making process of the TSF stability.
Fichier principal
Vignette du fichier
518231_1_En_15_Chapter.pdf (760.12 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04041350 , version 1 (22-03-2023)

Licence

Identifiers

Cite

Wioletta Koperska, Maria Stachowiak, Bartosz Jachnik, Paweł Stefaniak, Bartłomiej Bursa, et al.. Machine Learning Methods in the Inclinometers Readings Anomaly Detection Issue on the Example of Tailings Storage Facility. 8th IFIP International Workshop on Artificial Intelligence for Knowledge Management (AI4KM), Jan 2021, Yokohama, Japan. pp.235-249, ⟨10.1007/978-3-030-80847-1_15⟩. ⟨hal-04041350⟩
23 View
39 Download

Altmetric

Share

More