Hypotheses Tests Using Non-asymptotic Fuzzy Estimators and Fuzzy Critical Values - Artificial Intelligence Applications and Innovations
Conference Papers Year : 2020

Hypotheses Tests Using Non-asymptotic Fuzzy Estimators and Fuzzy Critical Values

Nikos Mylonas
  • Function : Author
  • PersonId : 1245253
Basil K. Papadopoulos
  • Function : Author
  • PersonId : 875667

Abstract

In fuzzy hypothesis testing we use fuzzy test statistics produced by fuzzy estimators and fuzzy critical values. In this paper we use the non-asymptotic fuzzy estimators in fuzzy hypothesis testing. These are triangular shaped fuzzy numbers that generalize the fuzzy estimators based on confidence intervals in such a way that eliminates discontinuities and ensures compact support. Our approach is particularly useful in critical situations, where subtle fuzzy comparisons between almost equal statistical quantities have to be made. In such cases the hypotheses tests that use non-asymptotic fuzzy estimators give better results than the previous approaches, since they give us the possibility of partial rejection or not of $$H_0$$.
Fichier principal
Vignette du fichier
500087_1_En_14_Chapter.pdf (371.94 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04060667 , version 1 (06-04-2023)

Licence

Identifiers

Cite

Nikos Mylonas, Basil K. Papadopoulos. Hypotheses Tests Using Non-asymptotic Fuzzy Estimators and Fuzzy Critical Values. 16th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Jun 2020, Neos Marmaras, Greece. pp.157-166, ⟨10.1007/978-3-030-49186-4_14⟩. ⟨hal-04060667⟩
14 View
15 Download

Altmetric

Share

More