An Innovative Graph-Based Approach to Advance Feature Selection from Multiple Textual Documents
Abstract
This paper introduces a novel graph-based approach to select features from multiple textual documents. The proposed solution enables the investigation of the importance of a term into a whole corpus of documents by utilizing contemporary graph theory methods, such as community detection algorithms and node centrality measures. Compared to well-tried existing solutions, evaluation results show that the proposed approach increases the accuracy of most text classifiers employed and decreases the number of features required to achieve ‘state-of-the-art’ accuracy. Well-known datasets used for the experimentations reported in this paper include 20Newsgroups, LingSpam, Amazon Reviews and Reuters.
Origin | Files produced by the author(s) |
---|