Graphical Lasso Granger Method with 2-Levels-Thresholding for Recovering Causality Networks
Abstract
The recovery of the causality networks with a number of variables is an important problem that arises in various scientific contexts. For detecting the causal relationships in the network with a big number of variables, the so called Graphical Lasso Granger (GLG) method was proposed. It is widely believed that the GLG-method tends to overselect causal relationships. In this paper, we propose a thresholding strategy for the GLG-method, which we call 2-levels-thresholding, and we show that with this strategy the variable overselection of the GLG-method may be overcomed. Moreover, we demonstrate that the GLG-method with the proposed thresholding strategy may become superior to other methods that were proposed for the recovery of the causality networks.
Origin | Files produced by the author(s) |
---|
Loading...