Dynamic Sampling Schemes for Optimal Noise Learning Under Multiple Nonsmooth Constraints - IFIP AICT 443: System Modeling and Optimization
Conference Papers Year : 2014

Dynamic Sampling Schemes for Optimal Noise Learning Under Multiple Nonsmooth Constraints

Abstract

We consider the bilevel optimisation approach proposed in [5] for learning the optimal parameters in a Total Variation (TV) denoising model featuring for multiple noise distributions. In applications, the use of databases (dictionaries) allows an accurate estimation of the parameters, but reflects in high computational costs due to the size of the databases and to the nonsmooth nature of the PDE constraints. To overcome this computational barrier we propose an optimisation algorithm that, by sampling dynamically from the set of constraints and using a quasi-Newton method, solves the problem accurately and in an efficient way.
Fichier principal
Vignette du fichier
3978-3-662-45504-3_8_Chapter.pdf (533.93 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01286460 , version 1 (10-03-2016)

Licence

Identifiers

Cite

Luca Calatroni, Juan De Los Reyes, Carola-Bibiane Schönlieb. Dynamic Sampling Schemes for Optimal Noise Learning Under Multiple Nonsmooth Constraints. 26th Conference on System Modeling and Optimization (CSMO), Sep 2013, Klagenfurt, Austria. pp.85-95, ⟨10.1007/978-3-662-45504-3_8⟩. ⟨hal-01286460⟩
110 View
81 Download

Altmetric

Share

More