Regularization of Linear-Quadratic Control Problems with <math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mi>L</mi> <mn>1</mn> </msup></math> -Control Cost - IFIP AICT 443: System Modeling and Optimization
Conference Papers Year : 2014

Regularization of Linear-Quadratic Control Problems with L 1 -Control Cost

Abstract

We analyze $$L^2$$ -regularization of a class of linear-quadratic optimal control problems with an additional $$L^1$$ -control cost depending on a parameter $$\beta $$ . To deal with this nonsmooth problem we use an augmentation approach known from linear programming in which the number of control variables is doubled. It is shown that if the optimal control for a given $$\beta ^*\ge 0$$ is bang-zero-bang, the solutions are continuous functions of the parameter  $$\beta $$ and the regularization parameter  $$\alpha $$ . Moreover we derive error estimates for Euler discretization.
Fichier principal
Vignette du fichier
978-3-662-45504-3_29_Chapter.pdf (292.86 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01286438 , version 1 (10-03-2016)

Licence

Identifiers

Cite

Christopher Schneider, Walter Alt. Regularization of Linear-Quadratic Control Problems with L 1 -Control Cost. 26th Conference on System Modeling and Optimization (CSMO), Sep 2013, Klagenfurt, Austria. pp.296-305, ⟨10.1007/978-3-662-45504-3_29⟩. ⟨hal-01286438⟩
64 View
200 Download

Altmetric

Share

More