Binary Level Set Method for Topology Optimization of Variational Inequalities - IFIP AICT 443: System Modeling and Optimization
Conference Papers Year : 2014

Binary Level Set Method for Topology Optimization of Variational Inequalities

Andrzej Myśliński
  • Function : Author
  • PersonId : 978259

Abstract

The paper is concerned with the topology optimization of the elliptic variational inequalities using the level set approach. The standard level set method is based on the description of the domain boundary as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton-Jacobi equation. In the paper a binary level set method is used to represent sub-domains rather than the standard method. The binary level set function takes at convergence value 1 in each sub domain of a whole design domain and $$-1$$ outside this sub domain. The sub domains interfaces are represented by discontinuities of these functions. Using a two-phase approximation and a binary level set approach the original structural optimization problem is reformulated as an equivalent constrained optimization problem in terms of this level set function. Necessary optimality condition is formulated. Numerical examples are provided and discussed.
Fichier principal
Vignette du fichier
978-3-662-45504-3_19_Chapter.pdf (310.71 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01286414 , version 1 (10-03-2016)

Licence

Identifiers

Cite

Andrzej Myśliński. Binary Level Set Method for Topology Optimization of Variational Inequalities. 26th Conference on System Modeling and Optimization (CSMO), Sep 2013, Klagenfurt, Austria. pp.199-209, ⟨10.1007/978-3-662-45504-3_19⟩. ⟨hal-01286414⟩
62 View
87 Download

Altmetric

Share

More