Novel Matching Methods for Automatic Face Recognition Using SIFT - Artificial Intelligence Applications and Innovations - Part I (AIAI 2012)
Conference Papers Year : 2012

Novel Matching Methods for Automatic Face Recognition Using SIFT

Pavel Kral
  • Function : Author
  • PersonId : 835421

Abstract

The object of interest of this paper is Automatic Face Recognition (AFR). The usual methods need a labeled corpus and the number of training examples plays a crucial role for the recognition accuracy. Unfortunately, the corpus creation is very expensive and time consuming task. Therefore, the motivation of this work is to propose and implement new AFR approaches that could solve this issue and perform well also with few training examples. Our approaches extend the successful method based on the Scale Invariant Feature Transform (SIFT) proposed by Aly. We propose and evaluate two methods: the Lenc-Kral matching and the SIFT based Kepenekci approach [7]. Our approaches are evaluated on two face data-sets: the ORL database and the Czech News Agency (ČTK) corpus. We experimentally show that the proposed approaches significantly outperform the baseline Aly method on both corpora.
Fichier principal
Vignette du fichier
978-3-642-33409-2_27_Chapter.pdf (311.84 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01521428 , version 1 (11-05-2017)

Licence

Identifiers

Cite

Ladislav Lenc, Pavel Kral. Novel Matching Methods for Automatic Face Recognition Using SIFT. 8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.254-263, ⟨10.1007/978-3-642-33409-2_27⟩. ⟨hal-01521428⟩
120 View
133 Download

Altmetric

Share

More