Trust-Aware Clustering Collaborative Filtering: Identification of Relevant Items
Abstract
Identifying a customer profile of interest is a challenging task for sellers. Preferences and profile features can range during the time in accordance with current trends. In this paper we investigate the application of different model-based Collaborative Filtering (CF) techniques and in particular propose a trusted approach to user-based clustering CF. We propose a Trust-aware Clustering Collaborative Filtering and we compare several approaches by means of Epinions, which contains explicit trust statements, and MovieLens dataset, where we have implicitly defined a trust information. Experimental results show an increased value of coverage of the recommendations provided by our approach without affecting recommendation quality. To conclude, we introduce a tool, based on recommender systems, able to assist merchants in delivering special offers or in discovering potential interests of their customers. This tool allows each merchant to identify the products to suggest to the target customer in order to best fit his profile of interests.
Origin | Files produced by the author(s) |
---|
Loading...