IBISC (Informatique, BioInformatique, Systèmes Complexes)  EA 4526 est le laboratoire STIC de l’Université de Paris Saclay – Université d’Evry, assurant une visibilité dans ce domaine sur le site, répondant aux enjeux du numérique et de l’interdisciplinarité, notamment en Génomique. Il est issu de la fusion de deux laboratoires : le LAMI (UMR 8042) et le LSC (FRE 2494).  La gouvernance du laboratoire est assurée par la direction composée d’un directrice, Samia Bouchafa-Bruneau, et d’un directeur adjoint, Nazim Agoulmine.

Le laboratoire IBISC se compose de 4 équipes (AROB@S, COSMO, IRA2, SIAM) dont les activités se répartissent en deux axes scientifiques STIC & SMART SYSTEM et STIC & VIVANT. Sans couvrir toutes les activités de recherche en leur sein, chacun des axes se focalise sur un domaine applicatif qui est respectivement : Drone &  Véhicule, et Médecine personnalisée et de précision.

 

  • STIC & SMART SYSTEM : Les recherches définies dans cet axe traitent de la conception de systèmes autonomes et intelligents. La notion de système se rapporte à la fois aux flottes de véhicules routiers ou aériens, aux robots, aux logiciels et services distribués et communicants ou aux composants matériels intelligents munis de capteurs interagissant. Ces dispositifs possèdent comme point commun d’être composés d’un grand nombre d’entités en interaction, dotées d’une autonomie de prise de décision tout en coordonnant leurs actions pour réaliser un objectif commun. La conception maitrisée de tels systèmes complexes pose deux questions majeures: l’une relative aux méthodes pour leur conception et l’autre ayant trait à l’optimisation de leur fonctionnement collectif et global, tout en prenant en compte les fluctuations de leur environnement. Elles conduisent à l’exploration de nouvelles approches combinant des méthodes et des théories de différents champs scientifiques : en automatique, algorithmique et méthodes formelles. Les applications se destinent plus particulièrement au domaine Drone et Véhicule.

 

  • STIC & VIVANT : ces recherches interdisciplinaires couvrent un spectre large de problématiques en biologie à différentes échelles du vivant : analyse de données et de signaux biologiques ou biomédicaux,  modélisation des systèmes biologiques, apprentissage de gestes chirurgicaux et assistance à la personne. Les recherches portent sur le développement de cadres théoriques, de méthodes algorithmiques et de plateformes répondant à ces enjeux. Concernant l’analyse des données et la biologie des systèmes, elles s’appuient sur des modèles d’apprentissage statistique, sur l’algorithmique pour la prédiction de structure, ainsi que sur la conception de modèles et méthodes formels pour l’analyse de la dynamique des réseaux. Pour l’apprentissage de gestes chirurgicaux et l’assistance robotique à la personne, nous développons des systèmes couplant des techniques d’analyse de signaux issus de plusieurs capteurs et de prise de décision. Les applications se destinent plus particulièrement au domaine de la médecine personnalisée et de précision.

Documents avec texte intégral

1 287

Références bibliographiques

1 777

Mots-clés

Modeling Scheduling Multi-agent systems Virtual reality Augmented reality Robust control Operator-valued kernel Model checking QoS Nonlinear control Object detection Model-checking Fuzzy systems Trajectory tracking Disassembly line balancing SVM Teleoperation LMIs Cloud computing Interaction 3D Breast cancer Complexity Tableaux Surgical training Identification Lyapunov methods Uncertainty UAV State estimation Observers Lyapunov theory Augmented Reality Precision medicine Classification Optimal control Autonomous vehicles Game theory Image processing Deep Learning Lyapunov stability Optimisation Interval analysis Linear programming Timed automata Machine learning Nonlinear systems Pose estimation Motorcycle Computer vision Algorithms Makespan Context-awareness Control Feature extraction Réalité virtuelle Artificial intelligence Adaptive control Lane reservation Linear matrix inequalities 3D Interaction Pooling function Clustering Estimation Robustness Tracking control Systems biology Optimization Gene expression Approximation algorithm Clinical gait analysis Apprentissage automatique Facility location LMI Bi-objective optimization Cloud Computing Vehicle dynamics Time-frequency Cerebral palsy Collision avoidance Adaptive fuzzy control Virtual Reality Simulation Segmentation Deep learning CNN Modelling Vehicle lateral dynamics 3D interaction Heuristic Dynamic programming Neural networks Stability Petri nets Network inference Neural network Réalité augmentée Formation control Calibration Kernel methods Approximation algorithms